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THE COEFFICIENTS OF PRIMITIVE 
POLYNOMIALS OVER FINITE FIELDS 

WEN BAO HAN 

ABSTRACT. For n > 7, we prove that there always exists a primitive poly- 
nomial of degree n over a finite field Fq (q odd) with the first and second 
coefficients prescribed in advance. 

1. INTRODUCTION 

Let Fq be a finite field with q elements, q - pi 1 a positive integer and p a 
prime number. A monic polynomial f (x) C Fq[x] of degree n is called a primitive 
polynomial if the least positive integer e such that f (x) Xe - 1 is qn - 1. It is well 
known that f(x) is irreducible over Fq [x]. If ( is a root of f (x) in Fqn, then ( is 
a primitive element of Fqn, namely the generator of the multiplicative group Fc7n 
of Fqn. Davenport and Carlitz have studied the properties of primitive elements. 
Recently, because of the applications of finite fields in cryptography, coding theory, 
designing Costas arrays etc., various properties of primitive elements have been 
investigated again. Let T(x) =x xq + + xq' be the trace from Fqn to Fq. 
We have the following result. 

Theorem A. Let n > 1 be an integer, a C Fq. Then there always exists a primitive 
element ( c Fqn such that T(() = a if (a, n) #4 (0, 3) for q 4 and (a, n) #8 (0, 2) 
for q arbitrary. 

The theorem above was proved by Davenport [3] for q = 2 as a consequence 
of his existence theorem of normal bases, by Moreno [9] for n = 2, Sun and Han 
[11] for q = p, Jungnickel and Vanstone [6], Cohen [1] for general cases. In fact, 
Theorem A is equivalent to the following result. 

Theorem B. Let a C F9 and n > 1 be an integer. Then there always exists a 
primitive polynomial f(x) = xn + alxn-1 + + an over Fq such that a1 = a if 
(a, n) #& (0, 3) for q - 4 and (a, n) :& (0, 2) for q arbitrary. 

Later we always assume that the polynomial we consider is monic. Let g(x) = 

xm + bi xm-l + + bm C Fq [x]. We call bi the ith coefficient of f (x) . Theorem B 
gives the distribution of the first coefficient of primitive polynomials. It is natu- 
ral to consider the other coefficients of primitive polynomials. In [5], Hansen and 
Mullen conjectured that with the three nontrivial exceptions (q, n, i, a) = (4, 3, 1, 0), 
(4, 3, 2, 0), (2,4, 2,1), there is a primitive polynomial of degree n with the ith coef- 
ficient prescribed (O < i < n). Further, in an excellent survey paper on primitive 

331 (D1996 American Mathematical Society 

Received by the editor January 12, 1994 and, in revised form, June 2, 1994 and December 5, 
1994. 

1991 Mathematzcs Subject Classification. Primary 11T06. 
Key words and phrases. Finite field, primitive polynomial. 



332 WEN BAO HAN 

elements, Cohen [2] asked whether there is some function c(n) so that there is one 
with [c(n)] (the integer part of c(n)) coefficients prescribed. In this paper, we prove 
that if n > 7 and q is odd, there exists a primitive polynomial of degree n with the 
first and second coefficients prescribed; consequently Hansen and Mullen's conjec- 
ture holds for i = 2 and n > 7. By our method, it seems plausible that we can take 
c(n) to be the least integer < ' 

although it is not easy to prove. The case of small 
characteristic is more difficult; see [11] for a discussion of the case p = 2. 

2. LEMMAS AND ESTIMATES 

First of all, we give a lemma from which the second coefficient of an irreducible 
polynomial can be represented by the traces of a root and the square of a root. 
Then Hansen and Mullen's conjecture reduces to the existence of primitive element 
solutions of some equation associated with the trace from Fqn to Fq. 

Lemma 1. Let f(x) = xn + alxn-1 + * + an be an irreducible polynomial over 
Fq, a be a root of f (x) in Fqn, q odd. Then a2 = (T( )2-T($2)), where T(x) is 
the trace from Fqn to Fq. 

Proof. Since f (x) is irreducible, q, qX. . . Xqfl are all roots of f (x) in Fqn . There- 
fore, 

f(x) = (x )(x q) ( qn-1 

and 

a2 = E 
O<i<j<n 

= 1 E eqinqj 

O<i,j<n 
i#j 

= T(4I+q + (+q2 + (1+qn- 

= 2T((T(() -_ 2) 

=1 (T (()2 - T(42 ) ) 

By Lemma 1, the existence of primitive element solutions of the equation T(x)2- 
T(x2) = c for c E Fq yields the conjecture of Hansen and Mullen in the case of the 
second coefficient. But we prefer to consider the following system of equations to 
obtain a strong conclusion: 

(2.1) T(x) =a, 

where a, b C Fq. If (2.1) has a primitive element solution ( in Fqn, let f (x) be the 
minimal polynomial of ( over Fq. Then the first and second coefficients of f (x) are 
a and 2 (a2 - b). Furthermore, f (x) is a primitive polynomial of degree n. Hence, 
there exists a primitive polynomial with the first coefficient a and second coefficient 
' 

(a2 - b). So we need to discuss the existence of the primitive element solutions of 
(2.1). For this reason, we review a few basic facts about the characters over finite 
fields. [1 
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Lemma 2. Let ( E F*; then 

(d) S X(d) (() | p 1) if ' is a primitive element of Fqn, 

diqn-1 x(d) 10 otherwise, 

where p(d) is a Mobius function, (p(d) is Euler's function and X(d) runs through all 
dth order multiplicative characters of Fqn. 

Let Tr be the absolute trace from Fq to Fp. Then the mapping :b x 
e2XiT(X)/p (x E Fq) is an additive character of Fq, called the canonical additive 
character. We define 'Pa(X) -= /(ax), a (fixed), x E Fq. Then the l/a'S (a E Fq) are 
all additive characters of Fq. We also observe that Ia(x) = X b(aT(x)) is an additive 
character of Fqn. 

Lemma 3. Let E e Fq. Then 

1:'a 0 if #0. 
aE Fq 

0i 

We still need an estimate on twisted exponential sums. Thanks to Weil, we have 
the following result. 

Lemma 4 ([9]). Let X be a dth order multiplicative character and A an additive 
character of Fq. Let g(x), h(x) e Fq [x], m = deg g(x), r = deg h(x) . If (m, d) = 

(r, q) = 1, then 

5 X (g(x)) A(h(x)) < (m + r -1) . 
xEFq 

Let Nq,n(a,b) denote the number of the primitive element solutions of (2.1) in 
Fqn and Q = q -1 Now we can prove our main result. 

q-1 

Theorem 1. (i) There holds 

Nq,n (O0 0) > - (q(qf l -1))q(q- + 1) 

(2w(Q) - 1)(q - 1)(2q + 1) Xqf}; 

(ii) if a #0 O, then 

Nq,n (a, O) > ( 1) {qn - 2(q-1) 

+ (2q - 1) /qT;- 2w(Q)(4q - 3) q 

-(2w(qnT-1) - 2w(Q)) (2q - 1) }qf+l}; 

(iii) if b : 0, then 

q -( 1) Nq,ri(a, b)? q29(q l -1) 
{ _q+q( 1( +) 

- (2w(Q) - 1)(2( + l)q + 6q - 2 )6 + q)Th 

- (2w(qn_-1) - 2w(Q))(4q + 1 - 8) Vqf+}+ 
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where w(m) is the number of the distinct prime factors of m and 

^ |o if a$0, 
1 if a 0. 

Proof. By Lemmas 2, 3, we have 

Nq,n(a, b) - cqi1 ?,~(T(~) -a) S bC2 (T (~2)-b) 
C F',n cCEFq C2EIFq 

x z i(d) EX(d) 
(2.2) x 

(qn-1) (d) 

-2 1)n cJq oi(d) q q )dlq" - It 

x 5 E E (T(cjX + C242) - cia - c2b)x(d)). 

x(d) Cl.C2EFq ,EF-,,q 

Here, x(d) runs through all dth order multiplicative characters of Fqn. Let Sdc, C2 

denote the term 

5 4(T(cj + C22) - ca- C2b)X(d)- 

Now we discuss separately the inner terms of (2.2): 
(1) S1,0,0 = qn - 1; 
(2) Ifd= 1,cl #0, then 

A1 - 5 Si,s1,o = 5 5 (T(cj() - c1a) 

C, E Fnq c1EF~ } EF*q 

5 (-c1a) ( Vb(T(cj()) -I 
ciEC \ Fqz 

1-q if a=0, 

if a$ 0. 

(3) If d =1, c2 #& 0, and ag is a fixed nonquadratic residue in Fq, then 

A2 = E SLO,X2 = E E (T(c2 2) -c2b) 
C2 EFfiq C2EFfi (EF*,qr 

= ( E E ',(T(c2j2) - C2b) + O ?,b(T(c2(C2) - ceob)) 

2 
2 2 2 22 2 (C2qb) E q(T(2 c2GEq 2Gfi 

+ E 0(_Cce2b) 1: f(T (C<2) 

C2E 'q (EF*,qt/ 
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From Gauss, we know that 

A21 < f(q-1)( q-[+ 1) if b= , 
- t(Vq+ 1) (VqT+ 1) if b 0 . 

(4) If d 1, cl # O, c2 #0 O, then 

I3 31 = 3 Sl,C1,C2 

Cl,C2EFq 

-= S S ?b(T(cli +-C2 2)-cla-c2b) 
Cl,C2EFq* (EFqn 

- S S S (TQ( + c -2)-ca - cclb), where ccI C2, 
cEFq* c1 E Fq* ( E F*n 

- S S fb(-cla-ccib) E b(T(c +C2)). 
cEFq* c1EF* E F*n 

It is obvious that 

E 2 {~~~~(q - 1) if a-=b-O,0 5 0(-c1a -cc 2b) =fq1 iab0 
CiEFq ~~~~~~~if a ~ 0, b 0. 

If b 0, c 0, then 

5 fb(-cIa-cc b) <? +1-l, 
clEFq 

5 f (e + C(2) < q+ 1. 
E Fq*n 

Hence, we have 

A (q-1)2(Vq\-+1) if a=b=0, 

I 31 < (q -1) (Vq-T+ 1) if a 0 O b = O,1 

t(q -1) (VIq+ 1) (,/q+ 1) if b 08 . 

(5) If d > 1, and a is a fixed nonquadratic residue in Fq, then 

A4 : o(d) : E Sd,cjQC2 
l<djqn-1 (d) _(d) Cl,C2EFq 

- 5 5(d) ( d,O,O + I: Sd,O,c2 
l<dlqn -I pd)X(d) C2EFq* 

+ I: Sd,cl,O + E3 Sd,C,2 
clEF cql,c2EFq 
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= E W~p(d) 1:S.,? I X(d (C-2 )(_-C2 b)Sd,0, I 

n<dlqn-1 X(d) C2EF d 

+ S 
X(d)(C21),O(_C2cab)Sd,o,i) 

c2EFq 

+ Z X(d) (cl>)V(-cla)Sd,l,o 
C1iEFq 

+ S , X(d)(cl1)0(-cja - CC2b)Sd,1,cc - 
cEF* c1EF* 

Since Sd,o,o 0 and the induced character of X(d) over Fq is trivial if and only if 

d1Q, we have 

Am4 = p(d) ( ( (-C 2b)Sd, o I 

+ 5 (-c2ab)Sd,o,i 
C2EF q 

+ vb(-cia)Sd,i,o + 5 b(-cia -cc2b)Sd,1,c | 
c1EFq C2EFq ciEFq 

+ w(d) 1: 
I 
2 dX ) (C 

- 
) 

b 
( _ C2b )Sd, 0 1 

1<dlq--l X(d) C2EF* 

dtQ 

+ S X(d)(C2-1)>(_C2ab)Sd ,o,i 

C2 E Fq*/ 

+ S X(d) (ci>)V(-cla)Sd, 1,0 

c1EF*q 

+ )(E (d)(c-1),0(-cja -CC b )Sd, 1,C c 

cEF* c1EFq* 

Now by Lemma 4 we obtain 

( w2(Q)1)(q-1)(2q + 1) q if a = b = 0, 

|(2w(Q) 1) (4q 
- 

3) Aq if a ,-O, b = 0, 
A41 <_ +(2 (q ) - 2w(Q))(2q - q)V +l 

{ (2w(Q) 1)(2(V + 1)q + 6q - 26 + 1) q if b #0. 

+ +(2w(qn-1) - 2w(Q))(4q + 1 - 6) q/Fl+ 
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We observe that 

N\qn(a, b) > q2(q-l 1){qf - 1 + - - - A 1 

Using the estimate above, we prove the theorem. D 

Now we give a simple proposition to show when Nq n(a, b) > 0. It is useful in 
the next section. 

Proposition 1. (i) If q1-2 > 2w(Q), then Nq,n(O,O) > O. 
(ii) Let (a,b) :& (0,0). If q2-3 > (n3 )2>(q3-1), then qn(a, b) > 0. 

Proof. This is an easy consequence of Theorem 1. 0 

Proposition 2. (i) Let n > 5. Then NTq.n(O, 0) > 0 for qfn large enough. 
(ii) Let n > 4, (a, b) :& (0, 0). Then N] nq(a, b) > 0 for qn large enough. 

Proof. This is an easy consequence of Proposition 1. D 

We see that Hansen and Mullen's conjecture for i = 2 holds if n > 4 and qn is 
large enough. In the next section, we will prove that Nq n(a, b) > 0 for n > 7. 

3. COMPUTATIONS 

First of all, we write uo = 2- 2)-I,U1 = (I - 3 Then the conditions in 
Proposition 1 can be translated into the following: 

Condition (A). qfn > 2uow(Q) 

Condition (B). qfn > (13 )ul2uiw((q-l-). 

It is obvious that Conditions (A) and (B) hold when qfn is large enough. Now 
we give lower bounds for n > 7. 

Proposition 3. (i) If qT' > An, then Condition (A) holds. 
(ii) If qn> Bn then Condition (B) holds. 
Here, An X Bn are given in Table 3.1. 

TABLE 3.1 

n u Ua An BRn 
14 7 14 2 7 2' 24 

8 4 
16 

24 9 3 
5 _ _ 

9 3 1 226 
5 

> 0<10 <2023 25 >1 - 
3 K- 7 
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Proof. The proof is computational. For example, take n = 7; we have uo = 1a4I u= 

7 We observe that the possible prime factors of q7-i are 7 or the prime numbers 2 q-1prm 

of type (14k + 1). Let wo w(q1 -7). We get 

- 

> 7 x 29 x 43 x 71 x 26.82(wo-4) 
q- - 

> 2uOwO +(6.8 2 -uo) wo -8.04. 

If wo > 4, we get q-1 > 2uowo and q7 > q1 If wo < 3 and q7 > 214, then 

Condition (A) holds. So we can take A7 = 214. 
On the other hand, 

q7 
q7-1 q - 

(q -) 

> 2 x 3 x 5 x 7 x 11 x 2ul(w(q-l)-5) x 

> 2 1117 x x 2u (w(q-l)- 
q-1 

Hence, if 

q7-1 (13Vul 
(3.1) > (- x 2 5 x 2-11 17 x 2ulI? 

q -1I - \3} 

Condition (B) holds. But 

q7 
q > 7 x 29 x 43 x 71 x 113 x 127 x 197 x 27 72(wo-7) 
q - - 

> 27.72wo-13.37 

If wo > 7, we have that (3.1) holds. If wo < 6 and 

q6 > (13) x 25ul x 2-11 17 x 26u1 

namely q < 61, then again (3.1) holds. So we can take B7 = 224. 

For n = 8, 9, using the fact that the possible prime factors of q4+ 1 resp. q6+q3 +1 

are 2 resp. 3 or a prime number of type (8k + 1), resp. (18k + 1), we can give a 

similar discussion and obtain the lower bounds indicated in Table 3.1. 

For n > 10 we have uo and u < 20. f w( )11, then 

> 2 x 3 x 5 x 7 x 11 x 13 x 17 x 19 x 23 x 29 x 31 
q - 

X 2 5(w(Q)- 11) > 2uOw(Q). 

If w(Q) < 10 and qn > 2100/3, Condition (A) holds. So we can take An - 

for n > 10. Similarly, we can take Bn = 235 for n > 10. D 

Theorem 2. If n > 7, Nq,n(a, b) >0 for any a,bEFq. 
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TABLE 3.2 

n ~~qn < An qn < Bn 

7 37 p7 (3<p<61) 

314. 321. 514 714. 

8 p8 (3 < p < 67); 316; p8 (3<p?< 29); 316; 

324; 516; 716; 324; 516; 

9 no 39; 59; 79; 

3k (10 < k < 21); 3k (10 < k < 22); 

> 10 5k (10 < k < 14); 5k (10 < k < 15); 

7k (10 < k < 12); 7k (10 < k < 12); 111o 

Proof. If qf > An resp. Bn, then Nq,n(a, b) > 0 by Proposition 3. If qf < An resp. 
Bn then qn must appear in Table 3.2. 

Factoring qn _ 1 for qn listed in Table 3.2, we find that Condition (A) holds for 
n > 7 and Condition (B) holds for (n, q) :& (7, 7), (7,3), (8,5), (8,3), (9,3). But for 
(nr, q) = (8, 5), (8,3), (9,3), we can prove Nq,n(a, b) > 0 by direct use of Theorem 1 
rather than Condition (A) or (B). 

Following the suggestions of a referee, we use the Cohen Sieve [2] for (a, b) # 
(0, 0), (n, q) = (7, 3), (7, 7). Let e lqn - 1; define 

T(e) = {E c Fqn I ( is a solution of (2.1) 
and ( is not any kind of eth power in Fqn, 

that is, ( = pd, pE Fqn, d I e only if d = 1}. 

It is obvious that T(q - 1) = Nq,n (a, b). We have 

T(el) n T(e2) = T([el, e2]), 

T(el) U T(e2) = T((el, e2))- 

Here, e1 lqn -1, e21qn - 1, [el, e2] and (el, e2) denote separately the least common 
multiple and the greatest common factor of e1 and e2. 

If [el,e2] = q- 1, then 

(3.2) Nq,n(a, b) =T(q - 1) 
= T(el) + IT(e2) - T((ei,e2)) I 

To estimate T(e), we need the following fact. 

Lemma 2* ([2]). Let ( C Fq*n; then 

z (d e2Z()( =f if ~ is not any kind of eth power, 
de x(d) ) { otherwise, 

where x(d) runs through all dth order multiplicative characters of Fqn. 

Suppose (a, b) 7 (0, 0), we consider the case (n, q) -- (7, 7). Let el = 174, e2 = 
9466; then [el, e2] = _ 1, (el, e2) = 2. Using Lemma 2* instead of Lemma 2 in 
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the proof of Theorem 1, we obtain 

IT(174)1 > 3367, 

IT(9466)1 > 6895, 

IT(2)1 < 9079. 

By (3.2), we obtain Nq,n(a,b) > 0. For (n,q) = (7,3), we take e1 = 2,e2 
1093. A similar computation gives Nq,n(a, b) > 0. Hence we finish the proof of 
Theorem 2. E 

By Lemma 1 and Theorem 2, we can easily give the following corollaries. 

Corollary 1. Suppose n > 7. Then there exists a primitive polynomial in Fq[x] of 
degree n with the first and second coefficients prescribed in advance. 

Corollary 2. Suppose n > 7. There are at least q primitive polynomials in Fq[x] 
of degree n with the first or second coefficient prescribed in advance. 

Corollary 2 shows that Hansen and Mullen's conjecture holds for i = 2 if n > 7. 
In the cases n = 4,5,6, the lower bounds An's in Proposition 3 are too large 

since qn - 1 may have more small prime factors. To give a complete list of the 
exceptions for which our conclusion in Theorem 2 does not hold, we suggest the 
Cohen Sieve [2] as a means of attack. The analysis of these cases is contemplated 
in future work. 

ACKNOWLEDGMENT 

The author is indebted to Professor Q. Sun for his encouragement and to the 
referees for their suggestions. 

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA, HEFEI, 

ANHUI 230026, THE PEOPLE'S REPUBLIC OF CHINA 

REFERENCES 

1. S. D. Cohen, Primitive elements and polynomials with arbitrary traces, Discrete Math. (2) 
83 (1990), 1-7. 

2. , Primitive elements and polynomials: existence results, Lecture Notes in Pure and 
Appl. Math., vol. 141, edited by G. L. Mullen and P. J. Shiue, Marcel Dekker, New York, 
1992, pp. 43-55. 

3. H. Davenport, Bases for finite fields, J. London Math. Soc. 43 (1968), 21-39. 
4. W.-B. Han, Primitive roots and linearized polynomials, Adv. in Math. (China) 22 (1994), 

460-462. 
5. T. Hansen and G. L. Mullen, Primitive polynomials over finite fields Math. Comp. 59 (1992), 

639-643. 
6. D. Jungnickel and S. A. Vanstone, On primitive polynomials over finite fields, J. Algebra 124 

(1989), 337-353. 
7. R. Lidl and H. Niederreiter, Finite fields, Addison-Wesley, Reading, MA, 1983. 
8. H. W. Lenstra and R. J. Schoof, Primitive normal bases for finite fields, Math. Comp. 48 

(1987), 217-232. 
9. 0. Moreno, On the existence of a primitive quadratic trace 1 over GF(pm), J. Combin. Theory 

Ser. A 51 (1989), 104-110. 
10. W. M. Schmidt, Equations over finite fields; an elementary approach, Lecture Notes in Math., 

vol. 536, Springer-Verlag, Berlin and New York, 1976. 
11. Q. Sun and W.-B. Han, The absolute trace function and primitive roots in finite fields (in 

Chinese), Chinese Ann. Math. Ser. A 11 (1990), 202-205. 
12. , Improvement of Weil exponential sums and its application, preprint. 


